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CASCADING UNCERTAINTY
IN FLOOD FORECASTING

• Communication between models, modellers & other stakeholders 
• spatial and temporal uncertainties in the inputs 
• the antecedent conditions
• the geometry of the river channel and floodplains 
• the probability of infrastructure failure; 
• characteristics of the system (model parameters); 
• limitations of the models to fully represent the surface and subsurface flow 

processes in flood generation and routing
• etc …



Cascading Uncertainty
This is a complicated nonlinear systems in which analytical 

solutions do not apply
Estimation of predictive uncertainty of distributed models 

demands very significant computational resources even 
when the analysis is done off-line (so that time is not 
critical) rather than in real time. There are two solutions: 

P D
Physically based modelling Data-based mechanistic modelling



Data-Based Approach
• The Data-based Mechanistic (DBM) approach to 

modelling rainfall-flow processes involves four 
main stages: 
– identification of the model structure; 
– estimation of the parameters that characterize this 

identified model structure;
– interpretation of the estimated model in physically 

meaningful terms; 
– validation of the estimated model on rainfall-flow data 

that is different from the calibration data used in the 
identification and estimation analysis.
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Validation periodD
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Slow & Fast componentD



Flood inundationD
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Forecast (EPS)D



National Flood Forecast System 
FRMRCD



Cascading Uncertainty
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Physically based modellingP



Physically based modelling 
(GLUE)P

Sample factors from prior distributions

Run model with each sample

Compare model results with observations

Retain models which are good predictors

…. loads



Functional SimilarityP

Varies!!!!

Pappenberger et al., 2001



Flow ForecastP
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Inundation Model

On which percentiles are decisions derived?



POTP see Jutta Thielen (Talk tomorrow)
& Jens Bartholmes (Poster)



P Dominant source of uncertainty

Uncertainty Input RR
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Sensitivity of RRP
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Rain is the 3rd most important factor (for this model & region & data)



Sensitivity of flood inundation
to input uncertaintyP



Sensitivity of flood inundation
to input uncertaintyP



Conclusions
• DBM models are very good for real-time forecasting 

within the natural delay of the system (e.g. Alzette 4hrs 
and Severn 36hrs)

• DBM + EPS is the only way to predict with DBM beyond 
the natural time delay (although they maybe radar etc in 
between). More sophisticated framework needs to be 
developed

• Cascading uncertainty offers an exciting opportunity to 
learn more about our models, challenge our 
understanding and scrutinise our decisions 

• Global Sensitivity Analysis offers a methodology which 
can be used to guide research and identify model 
inadequacy



THANK YOU!
The ultimate guide to choose 

an uncertainty analysis method
A Wiki Project

www.floodrisk.net



www.floodrisk.net



SPARE SLIDES



Cascading Uncertainty
(Physically based models)P

Possible, but need some methods to reduce the number of runs
More research needed to understand the dominant sources of uncertainty



Conclusions

• EPS 
• Data-based mechanistic models seem to 

be superior in real-time flood forecasting 
(in cascading uncertainties)

• Physically based models should be used 
for flood scenario studies and distributed 
predictions



Sensitivity RR
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