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Communication between models, modellers & other stakeholders
spatial and temporal uncertainties in the inputs
the antecedent conditions

the geometry of the river channel and floodplains
the probability of infrastructure failure;
characteristics of the system (model parameters);

limitations of the models to fully represent the surface and subsurface flow
processes in flood generation and routing
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This is a complicated nonlinear systems in which analytical
solutions do not apply

Estimation of predictive uncertainty of distributed models
demands very significant computational resources even
when the analysis is done off-line (so that time is not
critical) rather than in real time. There are two solutions:

Physically based modelling ajd-based mechanistic mod




 The Data-based Mechanistic (DBM) approach to
modelling rainfall-flow processes involves four
main stages:
— Identification of the model structure;

— estimation of the parameters that characterize this
identified model structure;

— Interpretation of the estimated model in physically
meaningful terms;

— validation of the estimated model on rainfall-flow data
that is different from the calibration data used in the
identification and estimation analysis.
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MFFS Midlands Region. Yerzion 06.11_ June 2005 [5tand alone)
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Physically based modelling Data-based mechanistic modelling







— Sample factors from prior distributions

'

Run model with each sample

'

Compare model results with observations

l

Retain models which are good predictors

l

.... loads




Varies!!!!
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On which percentiles are decisions derived?
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see Jutta Thielen (Talk tomorrow)
& Jens Bartholmes (Poster)
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Parameters Parameters

Uncertainty Input Observational Observational
Uncertainty Uncertainty

Structure Structure
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DBM models are very good for real-time forecasting
within the natural delay of the system (e.g. Alzette 4hrs
and Severn 36hrs)

DBM + EPS is the only way to predict with DBM beyond
the natural time delay (although they maybe radar etc in
between). More sophisticated framework needs to be
developed

Cascading uncertainty offers an exciting opportunity to
learn more about our models, challenge our
understanding and scrutinise our decisions

Global Sensitivity Analysis offers a methodology which
can be used to guide research and identify model
Inadequacy
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flood rls mMI“:
managemen
rﬂsumh consartium

The ultimate guide to choose
an uncertainty analysis method
A Wiki Project
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flood risI’ HIMI“:
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Possible, but need some methods to reduce the number of runs
More research needed to understand the dominant sources of uncertainty




e EPS

 Data-based mechanistic models seem to
be superior in real-time flood forecasting
(in cascading uncertainties)

* Physically based models should be used
for flood scenario studies and distributed
predictions
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