

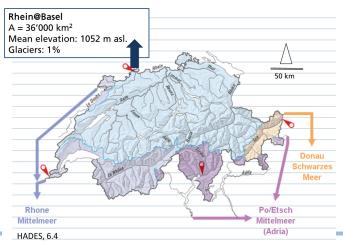
UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

Low Water in Switzerland

On Different Spatial and Temporal Scales

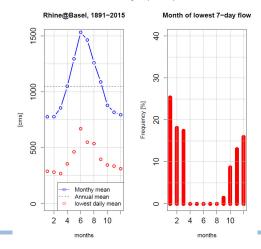
Prof. Dr. Rolf Weingartner Institute of Geography Oeschger Center for Climate Research University of Bern


August 2017

Basel – The best location to discuss Swiss hydrology

CLIMATE CHANGE RESEARCH

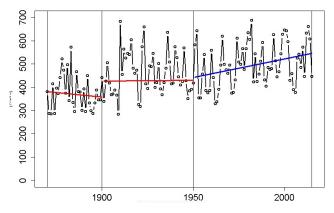
Integral hydrological answer of Northern Switzerland



Rhine@Basel: Basics

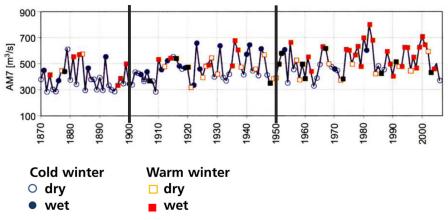
UNIVERSITÄT BERN OESCHGER CENTRE

CLIMATE CHANGE RESEARCH


Snow-melt dominated regime. Winter is the low flow season. Data: BAFU Talk: Focus on lowest annual flow over 7 days (AM7).

CLIMATE CHANGE RESEARCH

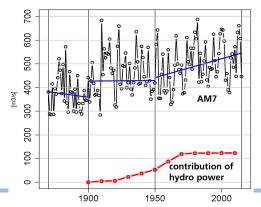
Low flows have increased over time. 3 distinct periods. Role of climate and human impact?



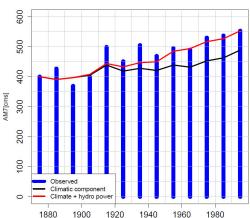
Role of climate AM7 and the correspondent climatic condition

UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH


After 1950: Increase of warm and wet winters.

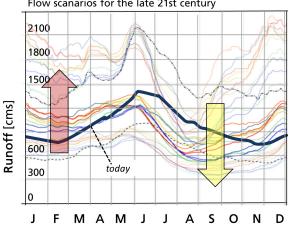
Human impact – Expansion of Hydro power


In winter: Water from artifical storage lakes produces electricity and thus is running off. \rightarrow Substantial contribution to natural runoff with significant increase between 1950 and 1970 due to the expansion of storage volumes. (today: net volume 2 km^3) \rightarrow + 120 m^3/s .

A statistical model puts the influences into perspective

CLIMATE CHANGE RESEARCH

Decadal changes of AM7 and processes behind


Adopted from Weingartner et al. (2007) 7

Rhine 2085: Low flow will occur in summer

OESCHGER CENTRE

Drier summer, decreased influence of ice and snow melt.

Flow scanarios for the late 21st century

8 From Zappa et al. 2012, modified

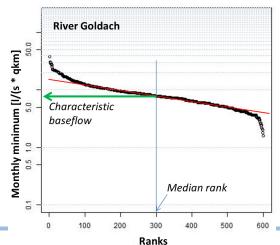
The Basel low flow index

Years with extreme summer low flows in Basel are years when society and economy are suffering.

1540:

- > Rhine: 10 % of mean (2003: 50 %)
- > very low harvest \rightarrow starvation
- > poor water quality \rightarrow diseases
- > limitations everywhere \rightarrow aggression in society

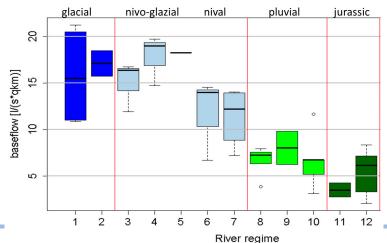
Source: B. Meyer in Transhelvetica 42


OESCHGER CENTRE CLIMATE CHANGE RESEARCH

- 1. Climate change \rightarrow **Increase** of low flow in winter
- 2. Hydro power production \rightarrow Increase of low flow in winter
- 3. Future climate change \rightarrow Summer as the main low flow season

Spatial pattern of low flow in Switzerland

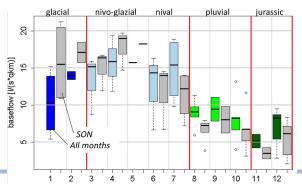
Method: Baseflow analysis acc. *Kille 1970* based on minimum monthly flows.



Spatial pattern of low flow in Switzerland

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

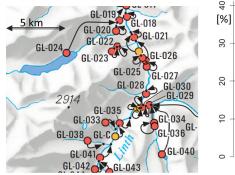
Distinct pattern as a function of climate and physiography (i.e. river regime type) is observed.


Baseflow analysis based on SON only ("without snow")

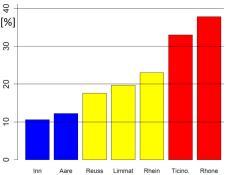
OESCHGER CENTRE CLIMATE CHANGE RESEARCH

Baseflow in

- > Alps/pre-Alps: 10 20 $l/(s * km^2)$
- > Mittelland (Plateau): 5 10 $l/(s * km^2)$
- > Jura: around 5 $l/(s * km^2)$



Human impact

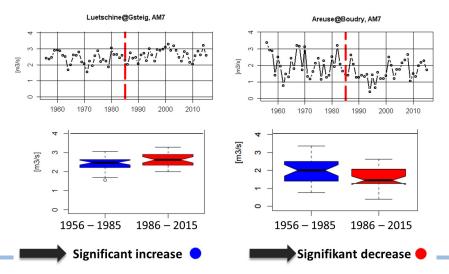


CLIMATE CHANGE RESEARCH

Human impact, i.e. man made low flows, is very substantial.

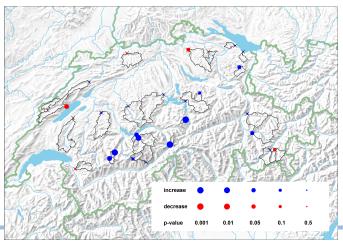
Abstractions, Canton of Glarus

Portion of river sections where river flow is altered (\rightarrow residual flows)


HADES (2007) und Weingartner (1999)

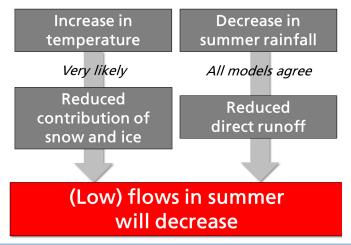
Have low flows (AM7) changed over time

1985 as the emerging year of climate change


OESCHGER CENTRE CLIMATE CHANGE RESEARCH

Low flow in a changing world

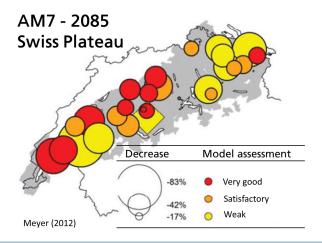
Increase in Alps and Pre-Alps (AM7 in winter), slight decrease in Mittelland / Jura (AM7 in summer or fall).



Low flows in a changing climate

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

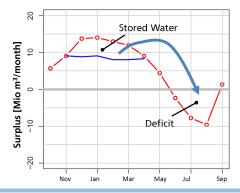
The future seems to be quite clear.



Low flows in a changing climate (2)

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

Swiss Plateau will be strongly affected.


The need for multi-purpose storages

Broye (Western Swiss Plateau): Monthly water balance in a dry year (around 2085)

which will occur almost every third year.

Challenges are a) to store water in winter and b) to distribute stored water for multi-purpose use in summer

Conclusion for Switzerland

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

- 1. Clear spatial pattern of low flows.
- 2. Substantial human impact \rightarrow Challenge: To re-assess environmental flows ("Restwasser") in a changing climate.
- 3. Situation in summer will become more and more critical → Adaptation is urgently needed (beside mitigation of course). It is time to start a pro-active planning now (multi-purpose storages, IWR as a prerequisite).