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IPCC, CHRISTENSEN et al. 2007

Uncertainty, global Scale:
Range of GCM: 21 Projections (A1B)

Figure 1: Number of models projecting an increased annual mean precipitation
(comparison of the periods 1980–1999 and 2080–2099, Multi-Model Data (MMD), 
A1B Scenario)
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Policy Questions

How will climate change influence inland 
and coastal waterways in Germany?

When will changes occur? 

What is the range of regional potential 
changes?

What adaptation measures can help?
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Model chain - schematic

Model chain - data

Multi model approach



Selection of relevant indicators

Diagnostics Notation Unit Description and definitions 
Average 
discharge 

MQ m³/s Mean discharge; arithmetic mean of daily mean discharge per 
time-span  
(annual and seasonal, with reference to the hydrological year or hydrological 
season); averaged to 30- year long-term annual seasonal means; hydrological 
yearbook primary statistic 

NM7Q m³/s Lowest arithmetic mean of discharge during 7 consecutive 
days;  
calculated per hydrological season; averaged to 30- long long-term annual or 
seasonal means 

Low flow 

FDC_Q90 m³/s Discharge undershot on 10% of all days of a 30- year period 
(i.e. the 90th percentile of the flow duration curve representing 10950 days, no 
leapyears taken into account) 

MHQ m³/s Mean maximum discharge;  
arihtmetic mean of all annual maximum discharges (per hydrological year) per 
timespan (here: 30- year, 3000- year); hydrological yearbook primary statistic 

HQ10 m³/s Discharge corresponding to a 10- year return period,  
i.e. discharge which occurs once every 10 years; calculated from a fitted 
distribution to the annual (hydrological year) maximum discharge values per 
timespan in a return level plot; for HQ10 a 30-year time-span is used 

HQ100 m³/s Discharge corresponding to a 100- year return period; 
 a 3000-year time-span from the rainfall generator is used 

High flow 

HQ1000 m³/s Discharge corresponding to a 1000- year return period 
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gauge Kaub, Rhine
Change in low flow*

-5/+10% -15/0%

* NM7Q, water year (Apr-Mar), 31 years, moving average
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Bed level variation near future (2021 – 2050)
Bed level variation distant future (2071 – 2100)
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Morphodynamics

Hillebrand et al. 2013
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chain 1 chain 2 chain 3

chain 1 chain 5chain 4

Model chains:  
1 = C20-A1B_ECHAM5r3_REMO-ENS_QSIM
2 = C20-A1B_BCM_RCA3_QSIM
3 = C20-A1B_HADCMQ0_HADRMQ0_QSIM
4 = C20-A1B_ECHAM5r3_RACMO_QSIM
5 = C20-A1B_ECHAM5r1_CLM24_QSIM

Rhine, ~ km 360 - 865

Water temperature

Hardenbicker et al. 2013



Impacts of climate change on 
annual total transport costs [€ /a]

Optimistic and pessimistic discharge scenario

Cost rise
~60 Mio. EUR/a ~ 9%

Cost rise
~30 Mio. EUR/a ~ 5%

Distant future

Quelle: Nilson et al. (2013)
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Science + responsibility

Uses/functions  
depending on 

Parameters Need for action with view 
to 

Assessment of 
information 

River basin/ 
waterway 

Period Signal 
intensity 

Confid-
ence 

Water supply (e.g. 
water 
abstractions) 

MQ (mean river discharge),  
hydrological year  
(Nov.-Oct.) 

Rhine - 0 + 
Elbe Since 

2050 
++ + 

Danube Since 
2050 

++ + 
Summer flow (e.g. 
water resources 
management) 
 

MQ (mean river discharge),  
hydrological summer  
(May-Oct.) 

Rhine° Since 
2050 

++ ++ 
Elbe At once + ++ 
Danube° At once + ++ 

Minimum water 
volume (e.g. fish 
migration, 
navigability) 

NM7Q (lowest mean discharge 
in a period of 7 days) or  
NMoMQ (lowest mean monthly 
discharge),  
water year  
(Apr.-March) 

Rhine° Since 
2050 

+ ++ 
Elbe Since 

2050 
++ + 

Danube° At once + ++ 
 



Operation mode

Dynamic
tunnel apron

Diesel-electric
engine

High strength steal
Multiple

propellers

Reduction of
max. draught

Reduction of
safety depth

Small vessels as 
tug-barge systems

Technical and operational
adaptation options

Fleet composition

Hydraulic engineering



Currently ….

Project reports & publications
dimension of climate signals & when, 
dimension and relevance of impacts for 
running the waterways, adaptation options

Synthesis for decision makers

Synthesis on methodology 

contributions for the GFCS



Currently + outlook

Step 1

Step 2

Step 3

Step 4 Ministry & 
Water and 
Shipping 
Authorities
& research



Seasonal prognosis/ decadal projections

•

planning 
horizon
investments in 
infrastructure

Short-term long-term
2071-21002021-2050

Currently …



outlook: new projections

Source: Sperna Weiland & Bouaziz (2014)



outlook: consistent scenarios for all 
transport modes

Source: dpa (2013)



Thanks

To the KLIWASians

Foto: BSH



Thank you!
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