

KLIWAS: organisational aspects and current work of BfG on climate change

1st Rhine-Mekong Symposium "Climate change and its influence on water and related sectors" 8-9 May 2014, Koblenz, Germany

Sebastian Kofalk & Stefanie Wienhaus, BfG

Drought

Uncertainty, global Scale: Range of GCM: 21 Projections (A1B)

Number of models projecting an increased annual mean precipitation

comparison of the periods 1980–1999 and 2080–2099, Multi-Model Data (MMD)

Figure 1: Number of models projecting an increased annual mean precipitation (comparison of the periods 1980–1999 and 2080–2099, Multi-Model Data (MMD), A1B Scenario)

Reliable supply?

- How will climate change influence inland and coastal waterways in Germany?
- When will changes occur?
- What is the range of regional potential changes?
- What adaptation measures can help?

+ national and international cooperation

+ national and international cooperation

Multi model approach

Selection of relevant indicators

Diagnostics	Notation	Unit	Description and definitions			
Average discharge	MQ	m³/s	Mean discharge; arithmetic mean of daily mean discharge per time-span (annual and seasonal, with reference to the hydrological year or hydrological season); averaged to 30- year long-term annual seasonal means; hydrological yearbook primary statistic			
Low flow	NM7Q	m³/s	Lowest arithmetic mean of discharge during 7 consecutive days; calculated per hydrological season; averaged to 30- long long-term annual or seasonal means			
	FDC_Q90	m³/s	Discharge undershot on 10% of all days of a 30- year period (i.e. the 90th percentile of the flow duration curve representing 10950 days, no leapyears taken into account)			
High flow	MHQ	m³/s	Mean maximum discharge; arihtmetic mean of all annual maximum discharges (per hydrological year) per timespan (here: 30- year, 3000- year); hydrological yearbook primary statistic			
	HQ10	m³/s	Discharge corresponding to a 10- year return period , i.e. discharge which occurs once every 10 years; calculated from a fitted distribution to the annual (hydrological year) maximum discharge values per timespan in a return level plot; for HQ10 a 30-year time-span is used			
	HQ100	m³/s	Discharge corresponding to a 100- year return period ; a 3000-year time-span from the rainfall generator is used			

vulnerability

⁵ European Environment Agency. 2008. Impacts of Europe's changing climate: 2008 indicator based assessment (Ch.6. Adaptation to climate change; figure from Isoard, Grothmann and Zebisch (2008)).

gauge Kaub, Rhine Change in low flow*

* NM7Q, water year (Apr-Mar), 31 years, moving average

River Rhine

Water temperature

Hardenbicker et al. 2013

Impacts of climate change on annual total transport costs [€ /a]

 \rightarrow Optimistic and pessimistic discharge scenario

Distant future

Cost riseCost rise~30 Mio. EUR/a ~ 5%~60 Mio. EUR/a ~ 9%

vulnerability

⁵ European Environment Agency. 2008. Impacts of Europe's changing climate: 2008 indicator based assessment (Ch.6. Adaptation to climate change; figure from Isoard, Grothmann and Zebisch (2008)).

Science + responsibility

Uses/functions depending on	Parameters	Need for action with view to		Assessment of information	
		River basin/ waterway	Period	Signal intensity	Confid- ence
Water supply (e.g. water abstractions)	MQ (mean river discharge),	Rhine	-	0	+
	(NovOct.)	Elbe	Since 2050	++	+
		Danube	Since 2050	++	+
Summer flow (e.g. water resources management)	MQ (mean river discharge), hydrological summer	Rhine [°]	Since 2050	++	++
	(May-Oct.)	Elbe	At once	+	++
		Danube [°]	At once	+	++
Minimum water volume (e.g. fish	NM7Q (lowest mean discharge in a period of 7 days) or	Rhine [°]	Since 2050	+	++
migration, navigability)	NMoMQ (lowest mean monthly discharge),	Elbe	Since 2050	++	+
	water year (AprMarch)	Danube°	At once	+	++

Technical and operational adaptation options

Currently

 Project reports & publications dimension of climate signals & when, dimension and relevance of impacts for running the waterways, adaptation options

Synthesis for decision makers

- Synthesis on methodology
- \rightarrow contributions for the GFCS

Currently + outlook

⁵ European Environment Agency. 2008. Impacts of Europe's changing climate: 2008 indicator based assessment (Ch.6. Adaptation to climate change; figure from Isoard, Grothmann and Zebisch (2008)).

Currently ...

Seasonal prognosis/ decadal projections 2021-2050 2071-2100 Short-term long-term Kurzest-Kurz- und Monats- & Mittelfristige Klima-Jahreszeiten-Mittelfristfristvorher-Klimaptognose projektion vorhersage vorhersage sage 30 1010 21 h 14 T 1 Jahr planning horizon investments in infrastructure

outlook: new projections

Source: Sperna Weiland & Bouaziz (2014)

outlook: consistent scenarios for all transport modes

Source: dpa (2013)

To the KLIWASians

www.kliwas.de

Sebastian Kofalk Stefanie Wienhaus

Coordination office Kliwas@bafg.de

