Global Ensemble Prediction Systems

principles, use and limitations
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Uncertainty

e Chaotic atmospheric system

— Scale dependent — small scales grow quickly, medium and
large scales retain predictability up to 1-2 weeks



Linear — non-linear — Chaos (Lorenz)

Linear re gime Non-linear regime

///é X=-cX+oY

Y =—XY+rX-Y

4 Z = XY-bZ

AN

Forecast time




Uncertainty Il & Il

* Dynamical Forecast Models contain approximations
— Quite accurate fluid dynamics
— Solved In finite differences / truncated spectrum
— Unresolved “physics” parameterised

o |nitial state Is known only within some accuracy

— Instrument errors or indirect measurements,
representativity

— Observation paucity — limits in areas, levels, variables
— Data assimilation methods include approximations
— Data assimilation affected by the above (model and chaos)
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Data sources for the ECMWF Meteorological Operational System
(EMOS).



dataassimilation




The task of the (meteorological) data assimilation is to
extract the largest amount of a useful information from
observations taking into account prior information about
the model state describing the atmosphere

Methods which have been used to merge a background state (the
prior) and observations in a way consistent with the estimated
accuracy of the each type of information

e The optimum interpolation scheme (Ol) (Eliasen 1954, Gandin 1963) (uses
the minimum squared error criteria);

e The 3D-Variational data assimilation (3D-Var)(Parrish, Derber,1992) (uses
the maximization of the posterior pdf)

e The 4D-Variational data assimilation (4D-Var) (Le Dimet, Talagrand,1986;
Courtier et.al 1994) (uses the maximization of the posterior pdf)

Ihe_ recent. trials. with_the. Kalman_ filter_approach. (Ihe_,
Implementation of the ensemble Kalman filter looks promising.)
(Evenssen, 1994, 2003,Anderson and Anderson, 1999, Houtekamer I
et.al, 1995, Hamill and Whitaker, 2002).

* Developing of ensemble filtering for nonlinear models based on the
particle filter approach( Kim et.al, 2003, Leeuwen 2003)



ECMWF ensemble forecast - Air temperature

Date: 26/06/1995 London Lat: 51.5 Long: 0
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How to deal with uncertainty

* Higher order models (error covariances, Liouville)
— Unrealistic (square cost)
— Need to know Initial uncertainty
— Theoretical tool in low order models

 Monte Carlo methods
— Sampling the forecast PDF
— Estimating skill ?
— Starting from initial PDF
— Limited number of realisations
— Ortogonality for efficiency desired



Ensemble methods

e Poor man’s ensemble
— Available from different models
— Difficult to interpret and not optimal
— Difficult to use in production

e Lagged average forecasting
— Already available forecasts from 6, 12, 24 h .. Earlier
— At full resolution
— At no extra cost
— From same model and easy to use



Ensemble methods I

 Singular vectors
+ Leading eigenvectors for optimal growth of errors
+ Good sampling of different directions
+ Represent errors in the future
— EXxpensive to compute
— Many samples but at low resolution (SV and forecasts)
— Perturbed around most likely state (=> each worse)
— Optimised at 48 h — not good for short range
— Do not show really extreme events — thresholds — index
— Ex. ECMWEF, Reading



I. Theory of singular vectors

.1 Mathematical backeround :

Non-linear primitive equations : (1) %A(X).

Let x be a perturbation of the state vector X :

) @ﬂ(xﬂc)_

A first order expansion of A4 1n the vicmity of X gives
AX+x)=AX)+H. x

Perturbation forecast equation : (3) %ﬂ—x.

Is integrated in time : (4) x(t)=Mx,,
where M stands for the tangent linear model integrated from f, to

.



{MJCD,MJCD >
<Xo, Xo >

amplification of the perturbation from #, to ¢ : \/

<M WXD:,J‘CD >

< Xo,Xo >

and introducing the adjoint model : J

PS : different scalar products can be used at the numerator and at the denominator

The eigenvectors of M*M are called the singular vectors of M,

And the eigenvalues of M*M are the singular values of M.
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Ensemble methods ||

e Breeding methods
+ Perturbed observations and a few parallel assimilations
+ Differences grow In organised way but need scaling
+ Cheap to compute
— Good for short range
— Represent errors in the past
— Not so theoretically founded
— Ex. NCEP Washington

e Ensemble assimilation
— Perturbed observations in many parallel assimilations
— Sampling of covariances in Data Assimilation



Breeding principle
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Initial random perturbation
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Quality of Ensemble forecast

Ensemble mean error

Correct spread — related to skill ?
How many outliers or not
Reliability — correct PDFs
Resolution — many probabilities

Operating characteristics — Hit rate — false
alarm

Cost/Loss value




Anomaly correlation scores

Quality of Ensemble Mean

NH 500 mb Height ( wave 1-20 )
Average For DOZO1MAYZ002 — 00Z31JUL2002
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Spread-skill relationship
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Outliers — extremes not represented (or ?)

Percentage Excessive Qutliers of That Expected
for NH 500 mb Height Talagrand Distribution
Average For 00Z01MAY2002 — 00Z31JUL2002
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Reliability

realistic probabilities on average
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Relative Operating Characteristics

TABLE 2. CONTINGENCY TABLE FOR FORECAST AND OCCURRENCE OF BINARY EVENT

observed

forecast no

yes

Hit Rate = d/ (ath)
False Alarm Rate =
c/ (a+c)

EPS resolves 50 p:s
Determ. only 1

Hit rate

ROC for EPS. Jan—Feb 1998
Europe Day 6. T850 anom > +4K
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Cost/Loss ration and Value

Expense = obs * L
Doing nothing

Expense = C/L if act
when C/L < obs
Expense= obs*L
Doing nothing if abov
C/L
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Perfect forecast
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Relative value of EPS for different probability thresholds.

Europe Day 6 Jan-Feb 1998, T850 anom > +4 K
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Use of EPS |

Uncertainty of deterministic forecast

— Spread - error relationship limited

— Spread around erroneous forecast - not nature
The likely evolution — ensemble mean

— Useful product and still essential features

— No details — but they are unpredictable

— No extreme values

Probability distribution

— Classes limited by number of samples

— Extreme values outside of the PDFs

Probabilities of event x > a etc.
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EPS Meteogram
Lenk (1108m) 46.52°MN 7.5"E
DCeterministic Forecasts and EPS Distribution Friday 24 March 2006 00UTC
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Probability >20 mm / 24 h

VT: Wednesday 29 March 2006

Ma 006 DDUTC @ECMWF Forecast probability t+132-156
probability
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Friday 24 March 2006 DODUTC @ECMWF Forecast probability t+132-156 VT: Wednesday 28 March 2006 12UTC - Thursday 30 March 2006 12UTC

Probability >5 mm /24 h

Surface: Total precipitation probability = 5.0 mm
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Use of EPS Il

Extreme forecast index
— To address extreme values not represented

Clustering techniques

— Low number of “alternatives”

— Limited success and debatable
Decision making cost/loss ratio
— Advanced used of probabilities

— Customer oriented

Boundary conditions for LAMSs

— Note that the LAM results are very dependent on
global forcing



EPS problems |

« ECMWE size of perturbations
— 1.5 day problem worse
— Necessary for spread
— Difficulty in interpretation of each member
» Severe weather, hurricane “Gudrun” 8
January 05
— Only 1-3 members at +72 to +132 hours

— When deterministic forecast got it +60 hours
EPS too



ECMWEF EPS members, control (T255) and
deterministic (T511). Larger errors in EPS
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EPS problems I

o Spread — skill relationship limited

e Extreme values often outside the PDF of the
EPS

— Extreme forecast index (threshold)

o Optimisation time in Singular Vector EPS
limits short range use



Spatial resolution is lower in EPS
(ex. 45 km <-> 111 km)

Two meter temperature forecast T511 Thursday 1 February 2001 12 UTC+60n 593y 1 February 2001 12 UTC+a0h
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Outlook
TIGGE could lead to a MUMMA-GEPS

TIGGE could lead to a Multi-Model, Multi-Analysis Global Ensemble Prediction
System (MUMMA-GEPS), with N production centers (yellow stars) and few data-hubs
(red) connected by high-speed, high-capacity communication lines.

Buizza et al: Operational Global Ensemble Prediction (1% TIGGE WS, ECMWF, 2 March 2005)




Flood applications can help to value a MUMMA-GEPS

The value of the MUMMA-GEPS could be assessed by linking TIGGE with the
European Flood Alert System (EFAS) and the Hydrological Ensemble Prediction

Experiment (HEPEX).
) Data Global M-l Local M-l Local Hl Quality
Observations —— . ! )
assimilation modelling modelling modelling control
‘Weather data *3/14D-Var *Global *Nested *Post- *Verification
. Data perturbation Limited Area processing methods
*Hydrological T
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-Observation - i ;IMo_deI -Lo;:alb " -Cotr:b(;natlon “Verification
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Buizza et al: Operational Global Ensemble Prediction (I°' TIGGE WS, ECMWF, 2 March 2005) 46
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