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Objectives

To present an overview of uncertainty related 
issues in flood forecasting. 
To show the impact of rainfall data uncertainty 
using disaggregation methodology. 
To introduce a methodology that combines 
multiple models using fuzzy logic for flood 
forecasting. The methodology aims to reduce 
model error/uncertainty.



Modeling for flood forecasting

Types of model
Physically-based 
distributed
Lumped/semi-
distributed 
conceptual
Data driven

Role of future rainfall 
in future floods

Integration of weather 
forecasts into flood 
forecasting system
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Uncertainty in flood forecasting

Uncertainty comes 
from

Input data
Model parameters
Model structure
Calibration data
Initial state of the 
system
Limited 
knowledge of the 
system
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Uncertainty caused by rainfall data

Uncertainty in rainfall 
comes from

Imprecise quantity
Low frequency data
Spatial regionalization

Rainfall data uncertainty 
propagation using 
temporal disaggregation

Monte Carlo based 
approach
Fuzzy extension principle 
based approach
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1. Determine UB and LB of Wi for given α-cut
based on their MF for all i =1, ..., m.

2. Start GA with parameters W1,...,Wm for
precipitation and (b1,1,...,b1,k),...,(bm,1,...,bm,k)

for d isaggregation coefficients

3. Generate initial parameter sets
(init ial population)

4. Adjust bi,j and generate disaggregated
signals calling an extenal program

Termination
criteria met?

7. Output Q from the best fit 
individual parameter set

No

Yes

5. Evaluate fitness of initial parameter sets using
the forecasting model and given fitness function

6. Perform select ion, crossover and mutation
and evaluate fitness of the new parameter set

8. Generate MF for the output (Q)

New 
generation

Repeat for
α-cuts

Repeat for 
max and min
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Based on Fuzzy EP

Rainfall disaggregation and uncertainty propagation

Based on Monte Carlo method

1. Generate randomly Wi based
on their PDF for all i =1, ..., m.

2. Generate coefficients bi,j
(for i =1,..., m; j =1,...,n)

3. Generate disaggregated signals
wi,j= Wibi,j

4. Run model using the signals
obtained in step 3:

Q =f (wi,j) 

Enough 
samples reached?

5. Generate distribution 
of the output (Q).

No

Yes
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Klodzko valley 
(Poland)

Basin area = 1744 km2

9 sub-basins
Model HEC-HMC
Forecast for Bardo on 
River Nysa Klodzka

Rainfall disaggregation and uncertainty propagation
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Flood of July 1997 
Max discharge 
reached 1700 m3/s 
(50 m3/s 3 days 
before).

Rainfall disaggregation and uncertainty propagation



Impact of rainfall uncertainty (Monte Carlo approach)

(a) Forecast 1

0.0

0.5

1.0

600 650 700 750 800

Discharge (m3/s)

N
or

m
al

is
ed

 fr
eq

ue
nc

y

(b) Forecast 2
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(c) Forecast 3
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With temporal disaggregation

Without temporal disaggregation



With temporal disaggregation

Without temporal disaggregation

(a) Forecast 1
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Impact of rainfall uncertainty (Fuzzy EP approach)



0

1000

2000

3000

4000

5000

23-Jun-93 08-Jul-93 23-Jul-93 07-Aug-93 22-Aug-93 06-Sep-93 21-Sep-93

Time [days]

R
un

of
f [

C
um

ec
] Observed Computed

Plays a vital role in model accuracy (more for 
conceptual models)
Problems:

Calibrated parameter sets may vary for different flood events. 
Not a single parameter set satisfies all flood events.
Calibration data also possess uncertainty.

Model calibration



Combination of Model 1 & 2

Fuzzy logic for reducing error/uncertainty

The basic fuzzy principle: 
Everything is a matter of degree.
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Fuzzy logic for reducing error/uncertainty

Methodology
Classify flood 
events into various
classes.
Calibrate a model
independently for 
each flood class.
Use fuzzy logic to
combine the 
models.

Flow Class (FC)
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Fuzzy logic for reducing error/uncertainty

Methodology (contd.)
Flow classes can be 
defined based on
antecedent conditions
and forecasted rainfall.
Requires consistent and
robust calibration
procedure.
Automatic calibration 
with manual intervention 
can be used.

Define initial parameter values and their
upper/lower limits

Use automatic calibration to find
optimum parameter values (one or more
algorithms and/or objective functions)

Is the performance
satisfactory? 

Evaluate the adjested parameter values 
using the model

No

Yes

Manually adjust the calibrated values 
using expert knowledge

Re-adjust values of parameters that are
dependent on calibrated parameters

Calibrated parameter set

Re-adjust parameter
limits if appropriate

If some parameters 
have most appropriate 
values exclude them 
for next calibration

Automatic calibration with 
manual intervention



Conclusions

The methodology uses specific models depending 
on the respective hydrological situation.
The methodology has potential to enhance 
forecasting capacity/precision of models using the 
fuzzy logic approach.
The methodology provides opportunity to forecast 
a range of plausible values.
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