

Disruption of sediment transport in rivers – Ecological impacts

Jürg Bloesch, IAD & Alumnus Eawag, Switzerland www.iad.gs – Juerg.Bloesch@emeriti.eawag.ch

CONTENTS

(1) Natural reference – The role of sediments in the river ecosystem & continuum

- (2) Human impacts by dams The effects on sediment transportation and the biota (benthos and fish)
- (3) Advice to mitigate these impacts

Ideal equilibrium profile of a river Above: gradient curve, erosion, accretion Below: composition of the load

Slope & geology matter

Hydrolological dynamics

Erosion / Accumulation / Islands

Bedload / Suspended matter

Riverbed is habitat for biota

River continuum concept (Vannote et al. 1980)

Substratum, POM & Biota change along the river

Regelsbrunn/Danube: morphological structure of the side arm system during low flow

© Nationalpark Donau-Auen / Baumgartner

Heterogeneity of sediments/ habitats fosters biodiversity

Bloesch (1994) – Drawing J. Peter

The needs of invertebrates & fish for living in a river

Reproduction	Substrate, Riparian zone
Development Growth	Oxygen, Temperature
Food intake	Substrate, Prey
Movement Migration	Adaption to current, Continuum
Energy & Metabolism (Respiration)	Current, Oxygen, Temperature

Sediment is habitat

Caddis fly (Trichoptera)

Sediment is habitat: Depth profile (Freeze core)

Interstitial needs flowthrough and oxygen (benthos, fish eggs)

Q dynamics: high flow events clean the interstitial, prevent colmation

Williams & Hynes, Freshwat. Biol. 1974

Sediment is habitat

Chub (Leuciscus cephalus) spawning – Sava River

CONTENTS

(2) Human impacts by dams – The effects on sediment transportation and the biota (benthos and fish)

- River continuum accepted in WFD (sediment transport, migration)
- Sediments are not SWMI in the DRBMP (ICPDR)
- Sediment budgets are difficult to achieve (e.g. Rhine, Danube)
- The Iron Gate reservoir retains about two-thirds of the suspended solids, and sediment delivery to the Delta decreased from 53 to 18 million tons/yr (WWF 2008)

Dams in the Danube River and 59 major tributaries

848 dams (156 hydropower) in the DRB (Reinartz 2002) free flowing sections: 8818 km = 51%

Effects of dams: Sediment quantity

- Disruption of the continuum (longitudinal connectivity: sediments, benthos, fish migration)
- Abiotic effects: upstream (reservoir) siltation, accumulation (adsorption) of contaminants; downstream river bed incision, lowering of groundwater table
- Biotic effects: upstream rheophilic (lotic) benthos and fish replaced by lentic species; downstream drying out of floodplains (e.g. Gabcikovo, Danube)
- River basin lacks sediment supply

Change of biocoenotic regions due to bedload retention by dams for flood protection

- Suspended and retained fine sediments (< 63 μm) adsorb and accumulate contaminants)
- Bioaccumulation & biomagnification in the food chain

CONTENTS

(3) Advice to mitigate these impacts

Mitigation of impacts

- Use high flow events to transport bedload sediments across weirs and dams (e.g. Masterplan High Rhine)
- Contaminated sediments need to be extracted and disposed as solid waste in specific treatments
- Local gravel deposition in hydropower chains (erosive and non-erosive sediment bars)
- Sediment spills of reservoirs: controlled and monitored: high turbidity kills fish (clogging the gills), extraction of contaminated sediments
- Technical fish passes or near natural by-passes

Projekt Stand Mai 2013

- Rinne ca. 1500m lang / 2m tief / 24m breit
- Sedimentmenge 28'266 m³
- Einleitung 20'178 m³
- Entsorgung 8'088 m³ nach Aushubrichtlinie ARL und Technischer Verordnung für Abfälle TVA

-	0.00	10.0	1214
1	ы	а	I IT
-	-	-	

Ablauf

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	39	40	41	42	43
-	-	14		0.10	0.10	0.20	0.20	0.20	0.40	0.58	0.75	1.00	1.60	1.75	1.70	1.65	1.45	1.35	1.45	1.80	1.60	1.70	> 2.0	> 2.0	> 2.0	0.80	0.20	0.20	0.70	0.70
456	456	456	456	444	444	432	432	432							1					1			-				432	432		
408	408	408	310	396	396	384	384	384	408	386	366		1						1	1	1		1	1			384	384	372	372
360	360	360		348	348	336	336	336	360	338	318	336														360	336	336	324	324
312	312	312	1034	300	300	288	288	288	312	290	270	288														312	288	288	276	000
264	264	264		194	194	126	126	126	264	140	30	126	264	160	194	228	376	454	376	126	264	194				264	126	126	62	338
1900	1900	1900	1200	1692	1692	1566	1566	1566	1244	1154	0.04	750	264	160	194	220	276	151	276	126	264	194	Û	0	Ű.	926	1566	1566	1024	1024

metron

River Rhine 1997

Lower Mura 2005