

From source to mouth, a sediment budget of the Rhine River

Dr. Gudrun Hillebrand

Federal Institute of Hydrology, Koblenz

Research project (2011 – 2014)

Funded by BfG

Supported by CHR, advisory board

Project team:

BfG + external partner RWTH Aachen University

Goal:

- Quantification of downstream fluxes of sediments through the Rhine
- Determination of sources and sinks of these sediments
- Sediment budget of the Rhine River from source to mouth
- Time period: 1991 2010
- several grain size fractions

Lake Toma

Nieuwe Waterweg

M. Minderhoud, 2005

WHY sediment budgets?

Navigation:

- sedimentation: navigational problems during low-flow periods
- erosion: infrastructure (bridge piers, ports)

Interaction of sediment and biota:

- habitat suitability
- WFD

Sediments carrying substances:

- nutrients
- contaminants

Flood protection:

sedimentation: loss of storage volumes

further aspects:

erosion: groundwater levels (ecology, drinking water wells)

• ...

instead of "just" interpreting sediment loads and/or bed evolution?

- identify sources and sinks of sediments
- connection between processes upstream and downstream
 (→ important for sediment management!)
- estimate sediment loads in case there are no measurements
- Examples:
 - Identification of sources of contaminants
 - River management: effects of local gravel feeding on downstream reaches

Budgeting

- Define control volume and time period
- Balance input and output

Budgeting sediments

Definition of control volume

- Typical sediment budgets in literature:
 - focusing on sediment yield

Our focus:

processes within channel

[...] researchers often assume that sediment budgeting is a timeconsuming exercise [...] However, we have routinely constructed sediment budgets [...] (requiring) **no longer than two months** of field work and analysis.

[...] methods of budget construction are relatively *uncomplicated*.

The **most difficult aspects** of a sediment budget to quantify are those involving transport and storage of sediment **in channels**.

(Reid & Dunne, 1993, Rapid Evaluation of Sediment Budgets)

Features of our sediment budget

- focus on processes within the channel
- basin-scale
- all grain sizes included
 - ≻ clay & silt
 - \succ sand
 - > fine gravel
 - coarse gravel
 - > stones
- strongly data-based
- data integration (several countries, several methods)
- detailed accuracy analysis

Agenda

Today:

- Introduction to Rhine catchment
- Method of sediment budgeting
- Results of our research project

> selected results on sink/source terms

> sediment budget of the Rhine

Tomorrow:

- Discussion of gaps in knowledge
- Use of sediment budgets
- Conclusions, topics for future research

Thank you!

Dr. Gudrun Hillebrand

Department Groundwater, Geology, River Morphology (M3)

Federal Institute of Hydrology (BfG) Am Mainzer Tor 1 56068 Koblenz Germany

e-mail: hillebrand@bafg.de www.bafg.de

Birgit Astor Karin Banhold Dr. Roy Frings Nicole Gehres Dr. Gudrun Hillebrand Dr. Stefan Vollmer